Autoencoder-driven weather clustering for source estimation during nuclear events

نویسندگان

  • Iraklis A. Klampanos
  • Athanasios Davvetas
  • Spyros Andronopoulos
  • Charalambos Pappas
  • Andreas Ikonomopoulos
  • Vangelis Karkaletsis
چکیده

Emergency response applications for nuclear or radiological events can be significantly improved via deep feature learning due to the hidden complexity of the data and models involved. In this paper we present a novel methodology for rapid source estimation during radiological releases based on deep feature extraction and weather clustering. Atmospheric dispersions are then calculated based on identified predominant weather patterns and are matched against simulated incidents indicated by radiation readings on the ground. We evaluate the accuracy of our methods over multiple years of weather reanalysis data in the European region. We juxtapose these results with deep classification convolution networks and discuss advantages and disadvantages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Audio Source Separation Using a Deep Autoencoder

This paper proposes a novel framework for unsupervised audio source separation using a deep autoencoder. The characteristics of unknown source signals mixed in the mixed input is automatically by properly configured autoencoders implemented by a network with many layers, and separated by clustering the coefficient vectors in the code layer. By investigating the weight vectors to the final targe...

متن کامل

Semi-Supervised Detection of Extreme Weather Events in Large Climate Datasets

The detection and identification of extreme weather events in large scale climate simulations is an important problem for risk management, informing governmental policy decisions and advancing our basic understanding of the climate system. Recent work has shown that fully supervised convolutional neural networks (CNNs) can yield acceptable accuracy for classifying well-known types of extreme we...

متن کامل

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE

The  tunnel  boring  machine  (TBM)  penetration  rate  estimation  is  one  of  the  crucial  and complex  tasks  encountered  frequently  to  excavate  the  mechanical  tunnels.  Estimating  the machine  penetration  rate  may  reduce  the  risks  related  to  high  capital  costs  typical  for excavation  operation.  Thus  establishing  a  relationship  between  rock  properties  and  TBM pe...

متن کامل

Towards Representation Learning for Biomedical Concept Detection in Medical Images: UA.PT Bioinformatics in ImageCLEF 2017

Representation learning is a field that has rapidly evolved during the last decade, with much of this progress being driven by the latest breakthroughs in deep learning. Digital medical imaging is a particularly interesting application since representation learning may enable better medical decision support systems. ImageCLEFcaption focuses on automatic information extraction from biomedical im...

متن کامل

Optimizing Satellite-Based Precipitation Estimation for Nowcasting of Rainfall and Flash Flood Events over the South African Domain

The South African Weather Service is mandated to issue warnings of hazardous weather events, including those related to heavy precipitation, in order to safeguard life and property. Flooding and flash flood events are common in South Africa. Frequent updates and real-time availability of precipitation data are crucial to support hydrometeorological warning services. Satellite rainfall estimatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental Modelling and Software

دوره 102  شماره 

صفحات  -

تاریخ انتشار 2018